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Abstract 

The concept of Fibonacci graphs introduced and developed by this author is 
critically reviewed. The concept has been shown to provide an easy pencil-and-paper 
method of calculating characteristic, matching, counting, sextet, rook, color and 
king polynomials of graphs of quite large size with limited connectivities. For 
example, the coefficients of the matching polynomial of 18-annuleno - 18-annulene 
can be obtained by hand using the definition of Fibonacci graphs. They are 
(in absolute magnitudes): 1,35,557, 5337, 34 361,157 081,525 296, 1 304426, 
2416571, 3327037, 3362528, 2440842, 1229614, 407 814, 81 936, 8652, 
361,3. The theory of Fibonacci graphs is reviewed in an easy and detailed language. 
The theory leads to modulation of the polynomial of a graph with the polynomial 
of a path. 

1. Introduction 

The recent applications of graph theory and combinatorics to chemistry and 
physics resulted in several new counting polynomials. Several reference books describe 
such developments [1,2]. Many of these polynomials have been used to study the 
topological theory of aromaticity and the thermodynamic stability of benzenoid 
hydrocarbons. A recent review has been written by Gutman [3]. The coefficients of 
a graph polynomial are combinatorial descriptions of a certain defined graph invariant. 
The latter is a count which is independent of the way of labeling of the graph. Of 
course, the number of vertices N or the number of edges E in a graph are two more 
trivial examples. Two other less trivial and more commonly used graph invariants 
which will be emphasized here are: 
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(a) SETS OF INDEPENDENT EDGES IN A GRAPH 

The symbol p(G, k) has been introduced by Hosoya [4] to indicate the 
number of selections of k nonadjacent (i.e. independent) edges in a graph G, where 
p(G, 0) is taken to be 1. Hosoya has shown that the sequence of p (G, k), 0 <~ k <~ max 
value of k, succeeds in ordering several molecular properties of alkanes [4,5]. A 
counting polynomial H(G; x) is defined according to eq. (1), viz. 

M 

H(G;x) = Z P(G,k)x k, (1) 
k = 0  

where M is the maximum value of k. The matching polynomial of a graph M(G, x) 
is given by 

M 

M(G;x) = ~. ( - D k p ( G ,  k)x N-2k (2) 
k = 0  

The two polynomials are related as follows [6] " 

M(G;x) = xNH(G, -x-2) ,  (3) 

H(G;x) = i-NxN/2M(G;i x-1/2). (4) 

The computation of these polynomials becomes very tedious for molecules with 
average size. The concept of "Fibonacci graphs" reviewed here facilitates such compu- 
tations. 

(b) SETS OF INDEPENDENT VERTICES 

In his study of topological properties of benzenoid hydrocarbons, Gutman [7] 
introduced the symbol O(G, k) to denote the number of ways of selecting k inde- 
pendent vertices of G. Accordingly, a polynomial was then called an independence 
polynomial [7], co(G; x), defined as 

M 

co(G;x) = Z O(G,k)x k (5) 
k = O  

and used to describe resonance relations among the hexagons of a benzenoid hydro- 
carbon [7,8]. 

Subsequently, Balasubramanian and Ramaraj [9] studiëd the independence 
polynomial (under the nanae color polynomial) in connection with certain polyominos 
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which have applications in statistical physics, and are related to the so-called king 
polynomials introduced by Motoyama and Hosoya [10]. 

All the above-mentioned polynomials are essential to the study of the 
topological theory of aromaticity, and thus their computation is a worthy effort. 
For this reason, several computer programs and algebraic methods were recently 
devised for such computations. A review wfitten by BaJasubramanian [11] outlines 
such developments. 

Fibonacci Graphs, the objects reviewed in this paper, present a surpfisingly 
easy pencfl-and-paper method for calculafing many counting graph polynomials of 
potentially very large graphs. 

To illustrate the power of this graphic tool, we quote a statement from Hess, 
Schaad and Argränant [12] in their study of the topological resonance energy [13] 
of certain annuleno-annulenes: "The computation of the GT resonance energy of 
[16] annuleno [16] annulene required 10.5 minutes of CPU time on a DEC 10099 
system. [18]annuleno[18]annulene was not completed after approximately 
30 minutes." To put this comment into perspective, however, it should be mentioned 
that programs mnning on personal computers are now able to give graph-theoretical 
resonance energies in a few minutes for the size of [ 18] annuleno [ 18] annulene. 

The aboslute magnitudes of the coefficients of the reference (matching) 
polynomial of the 18-annuleno-18-annulene which are its nonadjacent numbers 
p(G, 0), p(G, 1), p(G, 2) . . . .  ,p(G, M = 17) can now be hand-calculated. They 
are, respectively: 

{1, 35, 557, 5337, 34361, 157081, 525296, 1304426, 

2416571,  3317037,  3362528,  2440842,  1229614,  

407 814, 81 936, 8652, 361, 3}. 

The method of computation of such sequences using the concept of Fibonacci graphs 
is explained in detail later. 

Similarly, we quote another statement made by Randid, Ru~~id and Trinajstid 
[14] concerning the efficiency of computers as the size of the considered graph 
becomes very large: "The difficulty is, we should emphasize, inherent in a procedure 
which uses the Sachs theorem for constmction, and applied equally to coefficients 
of the characteristic polynomial as to coefficients of the acyclic polynomial. The 
explosive growth of combinations limits even the usefulness of computers." 

The strategy of this paper is as follows: first we define and illustrate a sequence 
of Fibonacci graphs, then more involved applications of the concept are given, and 
thirdly the theory of Fibonacci graphs is presented. Here, the theory is postponed 
until a later section because it is usually uninteresting to start a topic with closed- form 
equations! Finally, special types of Fibonacci graphs will be presented. 
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2. Illustration, definition and construction of Fibonacci graphs 

To illustrate the concept [ 1 5 - 1 8 ] ,  in fig. 1 we show several graphs and their 
independence polynomials [eq. (5)]. Similarly, in fig. 2 we show five graphs together 
with their counting polynomials [top line, eq. (1)] and matching (reference) 
polynomials [second line, eq. (2)]. In both figures, the relation between the co- 
efficients is illustrated. One can fomlalize a definition in the following way: Let 
{G_I, Go, G1, G2, • " • } be a set of  graphs (which may be finite or infinite). The 
above set is called a set of Fibonacci graphs if tor any three consecutive members the 
following relation holds: 

:(ON+ ~, :~+ I) = :(ON+ « k+ 1) + :(O N, k), (6) 

where I(GN, k) is a graph invariant of  an arbitrary graph G on N vertices. In this 
review, I(GN, k) is restricted to p(G, k) and/or O(G, k). The graph shown in figs. 
1 and 2 thus represent two sets of  Fibonacci graphs. 

It turns out that it is not trivial to characterize members of a set of Fibonacci 
graphs. For example, T4 (in fig. 3) may seem to be amember of the Fibonacci sequence 
{Tl, T2, T3}; however, inspection of their nonadjacent numbers reveals that T4 does 
not obey the recursion described by eq. (6). A similar situation is depicted in fig. 4: 
G4 is not a member of the Fibonacci family {g(1), G(2), G(3)}. This is a cmcial 
point because the use of the concept of  Fibonacci graphs in the computation of a 
counting polynomial of  a large graph depends on digression of  this graph to rauch 
smaller graphs by identifying its leading two members (i.e. the first two members 
in the Fibonacci set). It is obvious that the leading two members of T4 (fig. 3) are 
not T1 and T2, and similarly one cannot use the counting polynomials of g(1) and 
G(2) to obtain that of  G(4). This is related to the problem of constmction of 
Fibonacci graphs. This problem is treated in refs. [17] and [18], whichwe review here. 

CONSTRUCTION OF FIBONACCI GRAPHS 

A set of Fibonacci graphs possesses at least three elements. There are two ways 
of constructing a set of  Fibonacci graphs, viz.: 

(a) External subdivisions 

This process can be described in the following way. Let G1 be an arbitrary 
graph, possessing at least one edge. Its two adjacent vertices are labelled as Vo and vl. 
For all i ~> 1, the graph Gi+ 1 is obtained from G i by inserting a vertex vi÷ 1 on the 
edge connecting oi_ 1 and Vo. The graph Go is obtained from G1 by identifying the 
vertices Vo and 01, while the graph G_ 1 is obtained from G1 by deleting the vertices 
Vo and Ul. Then the infinite set {G_ 1 , Go, G1, G2, • • • } is a set of Fibonacci graphs. 
Figure 5 illustrates this mode of construction. 
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M LL~ ~ 
T~ T 2 T~ T 4 

Tl: 1 5 1 0 

I"2: 1 4 2 0  
~ I ~ I ~ I  

T3: 1 5 5 1 0 
I # =~ 

T4: 1 6 8 2 0 

Fig. 3. Four  trees and their nonadjacent  numbers 
ordered as p(T, 0), p(T, 1), p(T, 2) . . . . .  It c a n b e  
seen that T« is not a member  o f  the fintte set of  
Fibonacci  trees {Tl, T 2, T3}. 

g(]) .& 
G(4) 

G(2) G(3) 

g(1): 1 6 9 3 0 

6(2):  1 8 18 II 1 0 

G(3 ): 1 9 2__4 2 0 4  0 
# # 

G(4): 1 IC) 31 55 II 1 

Fig. 4. A set o f  graphs and their corresponding se- 
quences o f  nonadjacent  numbers  listed, respectiveIy, 
as p(G, 0), p(G, 1), p(G, 2), . . . . It is observed that  
G (4) is not  a member  o f  the Fibonacci  set {g(1), G (2), 
G(3)}. 
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,,9 

G_ 1 

v5 ~ «; 
q m, m, 

G 0 G 1 6 2 G 3 

Fig.  5. C o n s t r u c t i o n  o f  F i b o n a c c i  g raphs  via externälsubdivision. 
The  p rocess  leads to the  infinite set  {G_ 1, G o, G~, G~, . . . }. 

(b) h~ternal subdivision 

This is a process whereby a fing or a path in a graph is enlarged, keeping all 
other parts o f  the graph invafiant. An illustration is provided in fig. 6. 

It is now easy to predict  that /'4 is not  a member  of  the Fibonacci set 
Tl, /'2, T3 (fig. 3) and similafly for G(4)  of  fig. 4. 

v 0 v 0 v 1 

G_ 1 G o G 1 

v 2 v 2 v 3 

G 2 G 3 

G o G~ G 2 

Fig. 6. Illustration of construction of Fibonacci graphs via 
internal subdivision. The infinite set of Fibonacci graphs is 
{G 0, G~, G2, • • . }. Observe that G_I is notamemberofthisset. 
The top set illustrates the subdivision on a ring, while the second 
set is an internal subdivision along a path. 

3.  C o m p u t a t i o n a l  a p p l i c a t i o n s  o f  F i b o n a c c i  g r a phs .  

We shall briefly review three types of  applications, viz., direct applications, 
more involved applications and, finally, how to use this concept  to calculate other 
polynomials such as the sextet polynomials [19] ,  rook polynomials and king poly- 
nomials. This third aspect then links Fibonacci  graphs wirft two important  problems: 
one in chemistry,  which is the count  o f  Kekulé structures, an already solved problem 
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since the early fifties [20], but still of interest, and a problem in statistical physics, 
namely, the distribution of kings on lattice graphs [9,21 ]. 

3.1. DIRECT APPLICATIONS 

Suppose one wishes to calculate some counting polynomial of a large graph 
such as the one shown in fig. 7" G14, a graph on 14 vertices. Naturally, it is difficult 
to calculate all of its nonadjacent numbers by hand. (It is possible, probably, using a 

G14 

0 1 6 3 0 
~ . ~  

1 1 7 8 o 
~ 1 ~ 1 ~ 1  

2 1 8 14 L_3 0 
1 I I 

3 1 9 21 11 0 

10 1 17 113 375 654 574217 23 O 

Fig. 7. Graphical synthesis of the nonadjacent numbers p (G, 0), 
p (G, 1 ) , . .  , of  G14 by identifying its first two Fibonacci members, 
v i z . ] = O , / =  1. 

program [22]). This problem can be solved by identifying the first two members of 
the set of Fibonacci graphs to which Gl4 belongs. The whole computation takes less 
than 10 minutes using a desk calculator. This example illustrates a case of internal 
subdivision on a ring. In fig. 8, we illustrate internal subdivision along a path where 
the nonadjacent numbers of T18, a tree on 18 vertices, are computed from those of 
T8 and Tg, i.e. the first two members in the corresponding Fibonacci set. 

3.2. MORE INVOLVED APPLICATIONS 

3.2a. Characteristic polynomials 

Although the spectrum (i.e. eigenvalues) of the characteristic polynomial of 
fairly large graphs can be obtained routinely using readily available computer 
programs, the characteristic polynomial itself has been less easy to calculate. Recently, 
Balasubramanian [23] and Balasubramanian and Randid [24] applied theorems due to 
Goldsil and McKay [25] and were able to reduce the secular determinant of  a graph 
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~8 

m 

0 l 7 9 0 

l 1 8 15 0 0 
I ~  I ~  I ' ~  

2 l 9 22 9 0 
I '~ I '~ I'~1 

5 l 10 50 24 0 
! ! : 

< > TS= ~ 

< > T9= ~ 

10 1 17 114 381 658 546 172 9 

Fig. 8. Graphica! induction of the leading Fibonacci tree T s to 
Tls. The last line gives p(Tls, o), p ( T l s , ~  ) . . . .  , p ( T l s . 7 ) o f  Tls. 

adjacency matrix by elegantly pmning the graph at selective points. Their method, 
however, works mainly for acyclic graphs and/of graphs with pending bonds (i.e. a 
bond with a vertex of degree one). 

Here, we demonstrate that using the concept of Fibonacci graphs we can make 
elegant use of Sachs' theory [26] to calculate the characteristic polynomials of graphs 
(cyclic or acyclic) of potentially very large size. First, we review the Sachs formula 
[26]. The charactefistic polynomial of a graph containing N vertices is given by 

P(G; x) = a o X N + a 1 X N -  1 + a2  X N -  2 + . . . + a N  , 

' 0 ~< ~< N, are coefficients given by the Sachs formula: where  a m S, m 

(7) 

a = ~ (-1)e(s)2r(s) .  (8) 
m 

s E S m 

c(s) and r(s) are, respectively, the number of components and cycles in Sm, the Sachs 
P 

graph on m vertices, and the summation is taken over all S m s, i.e. Sachs graphs on m 
vertices. A Sachs graph is either a K2 subgraph, a cycle, and/or a union of both. As 
an illustration, fig. 9 shows all Sachs graphs for a graph containing two 3-membered 
rings. Obviously, as the size of the graph grows the number of terms proliferates 
exponentially and the count of all Sachs graphs by inspection becomes error-prone. 

To approach this problem using Fibonacci graphs, we resolve the coefficients 
of the characteristic polynomial into strictly acyclic and cyclic terms; thus: 
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S o 

S 1 

Sz 

S 3 

$4 

= 0 

G 6 

; O o :  1 

; a] =0 (By definition) 

(~2), ( % ) ,  ( ~ ) ,  (o_~) , ( / ) ,  

(b) ,  ('-;) }; °2 = 7. <_i~ ~ 2o= -7 

(% ?°), 
('2 J ) ,  (12 26) (,~ %), 

(~° »), (S ~-;) , ( ~  ~°)}: 

%:11 (-I) 2 2 °=11 

05 = 6 ( - I )  2 21 :12  

% =(-I)  2 22+ (_I)S 20 = 3 

I ~ ~ ~  ~~» ~~ «~~-~~~+~~~~+~~~ +~J 
Fig .  9 .  All sets of Sachs graphs and coefficient of the 
characteristic polynomial o f  G 6 . 

aaC = ~ ( - 1 )  «(s) (9) 
m 

s ~ Sarn c 

a c Y =  ~_~ (--1)  c(s)2r(s) ( 1 0 )  
m 

s ES  cy 

where the superscript ac stands for acyclic, while cy means cyclic. S~ c is an acyclic 
Sachs graph, i.e. containing at least one cycle. The subscript rn is the number of  its 
vertices. Therefore, a coefficient in P(G; x) can be expressed as: 
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a = a ae + a e y  . ( 1 1 )  
tn m m 

As an illustration, a6 of G6 (fig. 9) can be resolved into two terms, viz., 

a ae 2 o 6 = ( - 1 )  3 = - 1  

ag y = ( - 1 )  z 2  2 = 4, 

whence a 6 = - -  1 + 4 = 3. 
Sets of Fibonacci graphs satisfy the following two recursions [16] [which are 

special cases of eq. (6)] : 

]a a e ( G N ) l  + Iüa+e2 (GN+ 1)1 = laaei+2 (GN+2)1 i = 0, 2 , 4  . . . .  (13) 

and 

i = 3 , 5 , 7 , . ,  and/of i = 0 , 2 , 4 , . . ( a l  =0) .  

(14) 

Knowing the signs (which is tfivial), we can then compute the am's. An illustra- 
tion is depicted in fig. 10. It is observed that the recurrence holds only for the odd 
subscripted coefficients o f  their P(G; x)'s. This presents no difficulty, however, since 
both eqs. (13) and (14) hold (i.e. for the resolved parts). This subtle point is illustrated 
in fig. 11 for a6 and as of the Fibonacci graphs shown in fig. 10, namely, it can be 
seen that contributions of odd-membered rings to coefficients with eren subscripts 
lead to inequality: 

lai(Gn)l+ lai+z(G+l)l  4= lai+2(Gn+z)l i = 0 , 2 , 4 , . . .  (15) 

This is clear from fig. 11. When all rings in Gare  even-membered, eq. (15) becomes an 
equality. As an illustration, we consider the charactefistic polynomials of the Fibonacci 
graphs shown in fig. 12. 

Evidently, the concept of Fibonacci graphs is quite useful and promising in 
providing an easy pencil-and-paper approach to the problem of characteristic poly- 
nomials of  potentially very large graphs. Also, such recursions can be used to facilitate 
a computer  program. 

3.2b. Sextet and related polynomials: On the number o f  Kekulé struetures 

The several applications of graph-theoretical and combinatorial approaches to 
problems of organic chemistry (particularly alkanes [4,5] and benzenoid hydro- 
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Acyc l i c  Coefficients 

oc oc oc oc oc 
k o 0 02 a 4 06 08 

0 1 -7 11 -1 0 

1 1 - 8  17  - 6  0 
I ~ .  

2 1 -9 2 4 - 1 7  1 
I 

5 1 -10 32 - 5 4 7  

Cyclic Coefficients with od___dd subscripts 

k o? o;' o7 o;' 
0 -4  12 0 0 

1 -4  16"'3-4 0 

2 -4 20 -16 0 
I I 

3 -4  24 - 3 2 4  

Cyclic Coefficients with even subscripts 

0 4 0 

1 4~0 
2 4 ~ -14 

I 
5 4 -8  

C h a r e c t e r i s t i c  Polynomial Coefficients 

k o 0 0 2 ü 3 (14 0 5 ü 6 0 7 (3 8 (3 9 

0 1 -7 -4  11 12 3 0 0 0 

1 1 -8  -4  17"7"7"7"7"7"7"7"7"7~16 -2 -4  0 0 
, ~ 

2 1 -9 -4  24 20 -13 - -3 0 

3 l - 1 0 - 4  32 2 4 - 3 0 - 3 2 - I  4 

Fig. 10. Illustration of calculation of the characteristic 
polynomial of a cyclic graph eontaining no pending 
boncls using the concept of Fibonacci graphs. Observe 
that both cyclic and acyclic coefficients obey recursion 
equation (6), hut the summecl values do not. 
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k 

1 

2 

3 

QC ag + oc 
OB Y + 06 08 

4 -6 0 0 

I I 
-8  +7  

RESOLVE 
4 

a 6 0 8 

-2 0 

+ 
-1 

{( ~ ~ )} {(~>o_ooß)} 
cy osY 

a 6 

Fig. 11. I l lust rat ion o f  the resolut ion o f  the characterist ic 
po [ynomia ]  coeff ic ients in to  cycl ic and acyclic components.  

<>-~ro 
Cyclic Coeff icients 

cy cy 
k O4 y a~ y a~ y olO a12 

0 -2 I0  -I0 4 0 

1 -2 12 -16 6 0 

I I I - | '4  2 -2 14 -2616 

Acyclic Coeff icients 

GC OC OC OC (IC [IC O¢ 
k a 0 a 2 0 4 06 08 a10012 

0 1 -11 41 -61 32 -4  0 

1 1 -12 51 - 9 2 6 6  -14 0 
I I I I 1 I 

2 1 - lò 62 - 1 5 5 1 2 7 - 4 6 4  
! ! ! ~ ! ! ! i 

Characterist ic Polynomiol Coeff ic ients 

k a 0 a 2 aa, a 6 a 8 at0 a12 
0 1 - I l  39 -51 22 0 0 

1 1 -12 49 - 8 0  50 -8  0 
I I I I I I 

2 1 -13 60  -119 I01 -30  0 

Fig. 12. Illustration of the calculation of the characteristic 
polynomial of a graph containing no odd-membered rings by 
subduction to lowest Fibonacci member. 
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carbons [3]) and to statistical physics [20,21] led to the definition of several related 
counting polynomials, of which the counting polynomial of Hosoya [4] eq. (1) is a 
special case of a more general definition, namely" 

M 

F(G;x)= ~. O(G,k).X k, (16) 
k = 0  

where 
of G, viz., 

P(G, k) 

O(G, k) 
o ( a ,  k) = 

r(B, k) 

p(r, k) 

O(G, k) is a combinatofial function that enumerates certain defined invafiants 

(17) 

p(G, k) and 0(G, k) are defined by eqs. (1) and (5). The quantity of r(G, k) was first 
defined by Hosoya and Yamaguchi [27], which they called the kth resonant number. 
It counts the number of selections of k nonadjacent but mutually resonant hexagons 
when G is the molecular graph of a benzenoid hydrocarbon. The resulting polynomial 
is called the sextet polynomial a(B;x). It provides a combinatorial analysis of K, the 
number of Kekulé structures of the benzenoid hydrocarbons, thus: 

M 

a(B;x) = ~ r(B;k)x x. (18) 
k = 0  

Obviously, for x -- 1, the value of o(B; x) is simply K; i.e., 

o(B; 1) = K. (19) 

The sextet polynomial occupies a central block in the topological theory of benzenoid 
systems [ 1 - 3 ] .  The quantity p(r, k) defines the number of ways of selecting r non- 
attacking rooks on a rook board r. Two rooks are defined to be nonadjacent if they do 
not share the same row and column. The quantities p(r, k)'s define the coefficients 
of the rook polynomial given by 

M 

R(r;x) = ~_, p(r,k)x k. (20) 
k = 0  

Rook polynomials have a number of chemical [28] and mathematical applica- 
tions [29]. The above-mentioned polynomials were recently extensively reviewed by 
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this author [30]. The concept of Fibonacci graphs can be used to compute poly- 
nomials defined by eqs. (1), (5), (18) and (20) for very large graphs. First, we digress 
to three types of related graphs which resulted from nearly twenty years of work in 
mathematical chemistry [ 1 - 3 , 3 0 ] .  

(a) The caterpillar tree or Gutman tree [30,31]. This is an acyclic graph 
formed by the addition of m monovalent vertices (m = 0 or any other integer) to each 
of the vertices of a path. These trees play a role in the theory of aromaticity. 

(b) The Clar graph A. When the hexagons of a benzenoid hydrocarbon are 
replaced by verüces, and then every two vertices corresponding to two nonresonant 
hexagons are connected, a Clar graph results. If the benzenoid hydrocarbon contains 
no hexagon surrounded by three other hexagons, i.e. if it is nonbranched, its Clar 
graph becomes the line graph [32] of a certain caterpillar tree whose counting poly- 
nomial [eq. (1)] is the sextet polynomial [eq. (18)] of the benzenoid hydrocarbon. 
This is also the independence polynomial of  the Clar graph: 

o(B;x) = H(T;x) = co(A;x). (21) 

In such a case, {B, T, A} is called a set ofEquivalent Graphs [33]. 

(c) Rook boards. Every caterpillar tree (in fact, every bipartite graph) can be 
associated with a rook board r [28] when the vertices of the tree are replaced by 
cells such that two cells in r a re  adjacent only if the corresponding two vertices in T 
are also adjacent. However, adjacency relations among the cells of  r are defined as 
follows: two cells in r are adjacent if they share the same row and/or column. One can 
construct a rook board whose rook polynomial is identical to the counting poly- 
nomial of  T. Thus, the set of  equivalent graphs can be expanded to include r, viz., 
{ B, T, A, r }. An illustration of a set of equivalent graphs is shown in fig. 13. The main 
value of  a set of  equivalent graphs is computational, namely, if  one is able to calculate, 
say H(T;x)  other polynomials, viz., o(B;x), co(A;x),  R(r;x)  become immediately 
available. Then one can use the concept of Fibonacci graphs to calculate, say, a rook 
polynomial of  a very large rook board by constructing the appropriate set of  Fibonacci 
caterpillar trees. An illustration is shown in fig. 14. Thus, using the idea of  equivalent 
graphs together with the concept of  Fibonacci graphs, we have an easy way of  hand- 
calculating many counting polynomials of  very large graphs. The sextet polynomial of  
Blo (shown in fig. 14) is 1 + 17x + l14x 2 + 381x 3 + 658x 4 + 546x s + 172x 6 + 9x 7. 
Whence, K(Blo) = 1898 (an alternative to the "classic" method of  Gordon and 
Davison [20] ). Further, we know from the polynomial that the maximum number of 
non-attacking rooks is seven and there are only nine ways of placing such seven rooks 
on the rook board r,o drawn in fig. 14. Also, it is trivial to conclude that there are 
114 ways of coloring two vertices in A~o black so that no two black vertices are 
adjacent, but this number becomes 658 when we choose four nonadjacent vertices. 
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] Il IJ}  
Fig. 13. A set o f  %quivalent  graphs"; respectively, from left to right: 
a caterpillar tree, a benzenoid graph, a Clar graph, and a rook board. 
One observes the following interesting identi ty:  H(T;x) = o ( B ; x )  
= c o ( A ; x )  = R ( r ; x ) =  1 + S x + 1 5 x  2 ; K = 2 4 .  

m Nonodjücenl Numbers, p(T,o), p(T, l )  . . . .  ,p (T,M)  

1 1 8 15 

2 1 9 22 9 
I I I 

3 1 10 3 0  2 4  

I0 1 17 114 381 658 546  172 9 

Tl o 

AIo 

Fig. 14. Induct ion o f  the nonadjacent numbers of  rn = 1 to those of  
m = 10 which corresponds to the kth resonant numbers of  a non- 
branched benzenoid hydrocarbon on 17 hexagons. The corresponding 
Kekulé count  is 1898. The Fibonacci  approach shown here is an alter- 
native to the combinatorial  method  of  Gordon and Davison [20] .  Also 
shown in the figure is the equivalent Clar and rook graphs. 
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r(K,0) 

r (K,1) 

r(K,2) 

r(~,3) 

Fig. 15. Colorings of  a graph and the  cor responding  king pa t te rns .  
The cor responding  king po lynomia l  is 1 + 6 x  + 6 x  2 + x » . 

3.2c. King polynomino graphs, king polynomials and color polynomials 

Nearly a decade ago, Motoyama and Hosoya [10] generated king polyominos 
by the stacking of squares of equal sizes, called cells. They defined a king polynomial 
as follows: 

M 

K(t¢;x) = 7. r(•, k)x k, (22) 
k = 0  

where r(K, k) is the number of ways of placing k nontaking kings on the king 
polyomino K. Two kings are called nontaking ifthey occupy nonadjacent cells, i.e. cells 
sharing no common vertices. Conventionally, r(K, 0) = 1. Motoyama and Hosoya's 
work proved to be useful in treating several enumeration problems of lattice dynamics, 
namely the partition funcüon of the magnetic properties of transition metal crystals 
[34], as well as other problems in dimer statistics. In fig. 15, we illustrate various 
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KI,I Kl,2 

K2,I K2,2 

IIIII1~11111t] 
K5,6 

Kl,6 

K2,6 

K 1,1 1 7 I I  5 1 0 

Kl, 2 ] 8 17 11 2 0 

Kl, 6 ] 12 51 95 79 28 4 

K2 j  1 8 17 11 2 0 

K2, 2 1 9 24 22 5 0 

K2, 6 l 15 62 1•6 140 6] 9 

K2, 6 ] 12 51 95 79 28 4 0 

15 62 156 140 61 9 0 K3, 6 l 

K5, 6 ] 16 lOl 325 558 515 258 50 8 0 

Fig. 16. Fibonacci generation of the king and color polynomials 
of Ks, 6 , a graph on 16 components, by three Fibonacci external 
subdivisions. 

terms of  the king polynomial of an arbitrary king polyomino graph. It can be shown 
that there is a one-to-one correspondence with the colorings of certain graphs, which 
are the dualist graphs [35] of  the king polyominos (fig. 15). Whence, the color and 
king polynomials can be obtained from one another, which has recently been demon- 
strated by Balasubramanian and Ramaraj [9]. They computed these polynomials 
for very large lattices. In a recent paper, the present author [21] demonstrated how to 
use the concept of  Fibonacci graphs to calculate king polynomials of a large lattice. 
Another  example is depicted in fig. 16. The method uses three Fibonacci external 
subdivisions, viz., K a j  -+ Kl,  6 ; K2,1 ~ K2, 6, and finally K l ,  6 and K2, 6 are used as 
the first two Fibonacci members leading to the desired K5, 6, a polyomino on 16 cells. 
Its king polynomial is l + 1 6 x + 1 0 1 x  2 + 3 2 3 x  3 + 5 5 8 x  4 + 5 1 5 x  s + 2 3 8 x  6 + 5 0 x  7 
+ 8x 8. Thus, we can immediately see that the maximum number of nontaking kings 
is eight and that there are exactly eight ways of  distributing the eight kings. Similarly, 
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there are exactly 558 ways of arranging, four nontaking kings on the king board K5, 6. 
The color polynomials of the leading members can be obtained either by inspection or 
by using a well-known recursion, viz., 

¢o(G;x) = ( G -  v ; x )  + x w ( G O v ; x ) ,  (23) 

where v is any vertex in G and G - v is a subgraph obtained by deleting v from G, 
while GOr is obtained when v and all its adjacent vertices are pmned out of G. 

3.2d. Large a n n u l e n o -  annulenes 

In early applications of the topological theory of aromaticity, Hess and Schaad 
[12] faced a difficulty in computing the matching (reference) polynomials of large 
annuleno-annulenes, as mentioned in the introduction. The absolute magnitudes of 
the coefficients of the matching polynomial of a graph are simply its nonadjacent 
numbers. In fig. 17, we illustrate how to calculate the nonadjacent numbers of 
18- annuleno- 18- annulene. Such parameters might be ob tained in about three- quarters 
of an hour using a desk calculator and three steps of intemal subdivisions, as depicted 
in fig. 17. 

4. T h e o r y  o f  F ibonacc i  graphs.  M o d u l a t i o n  o f  the  p o l y n o m i a l  o f  a 

g raph  w i th  the  p o l y n o m i a l  o f  a p a t h  [ 18] 

4.1. THE MATCHING POLYNOMIAL 

Let M ( G n ; x  ) =- M n be the matching polynomial of a graph on n vertices. If 
Gn, Gn + 1 and G n + 2 are three Fibonacci graphs, then the following identity is tme" 

Mn+2 - x M  n+l + Mn = 0.  (24) 

The above equation corresponds to the auxilliary equation: 

X 2 -  x~,+ 1 = 0 ,  (25) 

with the following solutions: 

x + (x 2 - 4) 
}kl ,2 = 2 (26) 

We use the following convenient change of variable 

x = 2 cos t .  (27) 
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A],] A], 2 

A2,] A2,2 

18-Annuleno- 18- onnulene =- 

c(•)]6 
AI,16 

~ )D)16 

A 2 ,]6 

4} 

A16,16 

A 1 ,] 1 5 2 0 

A1, 2 l 6 6 O 

AI,16 ] 20 167 756 2015 3212 2970 1464 321 20 

A2,16 

A ] 6 6 0 

Ä2,2 1 7 11 3 

1 21 186 906 2652 4785 5247 3312 1071 

137 3 

Al,16 

A 2,16 

A16,16 

1 20 ]67 756 2015 3212 2970 1464 321 20 

1 21 186 906  2652 4785 5247 5312 1071 137 3 
i 

] 35 357 5357 34361 157081 525296 1304426 

2416571 3327037 5362528 2440842  1229614 

4078]4 81936 8652 361 3 

Fig. 17. Genera t ion  of  the  sequence of  nonad jacen t  numbers  of  
18-annu leno  - 1 8 - a n n u l e n e  by  staxting three F ibonacc i  in te rna l  
subdivisions using A~,~ and A2, ~. The last three  lines, A~6,~6, 
were not  comple ted  af ter  abou t  30 minu tes  on a DEC 1099 
system [ 1 2 ] .  Using the  def in i t ion of  F ibonacc i  graphs, we ob- 
ta ined the  desired valuës in less than  an hour .  using only  a desk 
calculator .  
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Then,  

Xx, 2 = cos t +  i s in  t =  e -+it 

where i = ( -  1)1/2 . 

Now M n can be expressed by 

B = ~x 7 + ~x~. 

Therefore ,  

M n = o~ e i n t  + (3 e - i n t  

= a(cos nt + i sin nr) + /3(cos nt - i s inn t ) ,  

i . e . ,  

M n = (a  +/3) cos nt + i (a  - 13) s inn t .  

The constants c~ and/3 are determined from the initial conditions; thus: 

M o =  a+13 

M 1 = (« +/3) c o s t  + i (a  - / 3 )  sin t, 

o r  

Then,  

M 1 = M o cos t + i ( a - / 3 )  sin t. 

i ( a -  /3) = 
M 1 - M o cos t 

sin t 

Now we substitute eqs. (31) and (33) into (30) to obtain: 

M n = M  1 

However,  

s inn t  

sin t 

Mo [ cos t sin nt - cos nt sin nt ] 
sin t 

cos t s inn t  - c o s n t  sin t = sin ( n t -  t) = sin ( n -  1) t. 

Whence, 

s inn t  sin (n - 1) t 
= M o Mn M1 s in t  s i n t  

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 
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Now, for the paths M 1 = x = 2 cos t and M o = 1, i.e. for the paths M n = M(Pn) ,  and 
eq. (35) becomes: 

2 c o s t s i n n t -  s i n ( n -  1)t 
B4(Pn) = sin t 

(36) 

However, 

s innt  = 2 cos t  sin (n - 1) t - sin (n - 2) t, 

whence eq. (36) becomes 

sin ( n  + 1)t 
M(Pn)  - sin t (37) 

Therefore, 

sin nt  
- M(Pn 1) 

sin t 
(38) 

and 

sin (n - 1) t 

sin t 
= M(Pn - 2 )" (39) 

Using eqs. (38) and (39) into (35), we obtain the desired relation, viz., 

Mn = M 1  M(Pn -x  ) - Mo M(Pn - 2 )" (40) 

Equation (40) described how the matching polynomials of  Fibonacci graphs are 
modulated with the matching polynomials of  paths (which are their characteristic 
polynomials). 

We observe that eq. (37) is the trigonometrie representation of  Fibonacci 
numbers, since they lead to the characteristic polynomials of the paths when the 
appropriate trigonometric substitutions are made. Thus, 

sin t 
Mt~o)~»' = s i n t  - 1 ,  

M(p1)  _ sin2tsint - 2sintcoSt-sint s in(0) t  = 2 c o s t  = x ,  
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M ( P ]  - s i n 3 t  _ 2 s i n 2 t c o s t - s i n t  = cA ~ t . , smtcos2 t  _ s i n t )  = x 2 - 1. 
~ . - 2  / sin t sin t sin t 

Higher terms can be similarly generated. 

4.2. THE COUNTING AND INDEPENDENCE (COLOR) POLYNOMIALS 

Let F r indicate either the counting or independence polynomials (eqs. (1), (5), 
respectively) o f  a graph containing r vertices. For  a series of  Fibonacci graphs, the 
following recursion applies' 

B . 2  - Fr+l - x F r =  O, (41) 

which requires the following auxilliary equation: 

X 2 - x -  x = 0  (42) 

with the following two solutions: 

1±  ( l + 4 x )  1/2 
Xl,2 = 2 (43) 

We use the following change of  variable: 

Then, 

(1)~ 
= - . (44) 

x 2 cos t 

cost -+ i s i n t  e x p ( ±  i t )  
- - ( 4 5 )  

Xx,2 2 cos t 2 cos t 

The most  general solution o f  F r is 

= r r ,  (46) F r A X~ + B X  2 

where A and B a r e  constants to be determined from initial states. 
Using (45) and (46), one obtains after straightforward algebraic manipulations: 

(x)r 
Fr = 2 cos t [(A + B) cos r t  + i(A - B) sin rt] . (47) 
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Now, to find A and B we proceed as before,  namely from (46) and (45): 

F o = A + B  

F 1 
A (cos  t + i sin t) B ( c o s  t - i sin t) 

= + 

2 cos t 2 cos t 

o r  

Fö sin t 
F = ~ + i ( A - B )  ~ , 

1 2 2 cos  t 

whence 

2 cos t cos t 
i(A - B)= F 1 F o 

sin t sin t 

Ussing (48) and (51) into (47),  we finally obtain: 

(~  ; [  sin~, ~in~rl,~ 1 
= 2 cos t F F o - . 

Fr 2 c o s t  1 s i n t  s m t  

To obtain the function for the paths, we assume the special case: 

F o =  F I =  1 

and use eq. (53) into 

1:,.+ 2 = Fr+ 1 + xFr ,  

which, for  r = 0, leads to: 

F 2 =  F1 + X, 

i.e. 

F2 = l + x .  

However,  

1 + x = co(P 1 ;x )  = H ( P 2 ; x  ). 

Similarly, when r = 1, we get 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

~= ~+x~, 
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o r  

F a =  l + 2 x  

= o o ( P  2 ; x )  

= H(P 3 ;x)  . 

So in this special case ( F  o = F 1 = 1), we can write 

F j =  c o ( P . _ l ; x  ) = H ( P j ; x ) ,  ( F o =  F 1 = 1) 

where Pj is a path on j vertices. 
Now, for F o = F 1 = 1, eq. (52) becomes 

( 1 ) r [ 2 s i n r t c o s t - s i n ( r -  1)tl 
Fr = fr = 2 cos t sin t " 

However,  

s i n n t  = 2 s i n ( n -  1 ) t c o s t - s i n ( n - 2 ) t .  

Therefore ,  

(1) 
fr = 2 COS t 

and whence 

r s i n ( r +  1) t  

( 1 t.) r-1 
L -  1 = 2 cos 

and 

f r -2  = 2 c o s t  

sin t 

sin rt 
sin t 

sin (r  - 1) t 

sin t 

Now eq. (52) may  be rewritten as 

( 1 ~ r - 1  s in r t  
Fr = 2 c o s t  sin t F1 

- (2còst)r [- (2clst)2" - (2c@st) -=] 

(55) 

(56) 

(F o= F I = I) (57) 

(58) 

(59) 

(60) 

sin (r  - 1) t 
s i n t  F o . (61) 
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Using (59) and (60) into (67), we obtain: 

B :  F1~_1 + xFo;-~, 

and using eq. (56), we obtain the desired relations: 

(a) When F r = H(@;x),  then 

(62) 

H(Gr;X ) = H(G 1;x) H(P r_, ;x) + xH(Go;X )H(P  r_2;x); (63) 

(b) When F r = co(Gr;x), then 

co(Gr;x ) = ~o(G 1 ;x)co(Pr_ 2 ;x) + xco(Go;X)co(P  ~_ 3 ;x). (64) 

Equations (63) and (64) describe the moldulation of the counting and color poly- 
nomials of Fibonacci graphs with the corresponding path polynomials. 

5. A special  t y p e  o f  F i bona c c i  g raph:  C o - m a t c h e d  F i b o n a c c i  

graphs  [ 17] 

In this final section, we consider an interesting class of Fibonacci graphs 
possessing identical matching polynomials. The graph G(q, r:s, t) is obtained by con- 
necting an isolated vertex v to some of the vertices of a cycle containing s + t + r + q 
vertices. If  we imagine v to be in the center of the cycle, then r + q is the number of 
vertices to which v is connected, while s and t are sets ofvertices not connected to v. 
An illustration is given in fig. 18. These families ofgraphs can be genrated by internal 
subdivisions at either sides of the central vertex. An example is given in fig. 19. The 
members of such families of such types of Fibonacci graphs are topomers [36], as 
depicted in fig. 20. These topomers are also called R, S isomers and play a significant 
role in graph-spectral theory recently developed by Polansky and Zander [36] and 
others. 
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o~ ~~~ 
b 

Fig. 20. Depiction of co-matched Fibonacci 
graphs as pairs of R, S isomers (topomers). 
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