Journal of Mathematical Chemistry 2(1988)1 —-29 1

REVIEW

THEORY AND COMPUTATIONAL APPLICATIONS
OF FIBONACCI GRAPHS*

S. EL-BASIL”
Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA

Received 31 July 1987

Abstract

The concept of Fibonacci graphs introduced and developed by this author is
critically reviewed. The concept has been shown to provide an easy pencil-and-paper
method of calculating characteristic, matching, counting, sextet, rook, color and
king polynomials of graphs of quite large size with limited connectivities. For
example, the coefficients of the matching polynomial of 18-annuleno — 18-annulene
can be obtained by hand using the definition of Fibonacci graphs. They are
(in absolute magnitudes): 1,35,557,5337,34361,157081,525296,1304426,
2416571, 3327037, 3362528, 2440842, 1229614, 407814, 81936, 8652,
361, 3. The theory of Fibonacci graphs is reviewed in an easy and detailed language.
The theory leads to modulation of the polynomial of a graph with the polynomial
of a path.

1. Introduction

The recent applications of graph theory and combinatorics to chemistry and
physics resulted in several new counting polynomials. Several reference books describe
such developments [1,2]. Many of these polynomials have been used to study the
topological theory of aromaticity and the thermodynamic stability of benzenoid
hydrocarbons. A recent review has been written by Gutman [3]. The coefficients of
a graph polynomial are combinatorial descriptions of a certain defined graph invariant.
The latter is a count which is independent of the way of labeling of the graph. Of
course, the number of vertices ;V or the number of edges E in a graph are two more
trivial examples. Two other less trivial and more commonly used graph invariants
which will be emphasized here are:
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(a) SETS OF INDEPENDENT EDGES IN A GRAPH

The symbol p(G, k) has been introduced by Hosoya [4] to indicate the
number of selections of & nonadjacent (i.e. independent) edges in a graph G, where
p(G, 0) is taken to be 1. Hosoya has shown that the sequence of p(G, k), 0 < k < max
value of k, succeeds in ordering several molecular properties of alkanes [4,5]. A
counting polynomial H(G; x) is defined according to eq. (1), viz.

M
HG;x) = 2. p(G, k)x*, (1)
k=0

where M is the maximum value of k. The matching polynomial of a graph M(G, x)
is given by

M
M(G;x) = 2. (—D)*p(G, k)xN 2% (2)
k=0

The two polynomials are related as follows [6] :

M(G;x) = xNH(G, —x7?), (3)

TV xM2 (G i X7V, (4)

H(G; x)

The computation of these polynomials becomes very tedious for molecules with
average size. The concept of “"Fibonacci graphs” reviewed here facilitates such compu-
tations.

(b) SETS OF INDEPENDENT VERTICES

In his study of topological properties of benzenoid hydrocarbons, Gutman [7]
introduced the symbol O0(G, k) to denote the number of ways of selecting & inde-
pendent vertices of G. Accordingly, a polynomial was then called an independence
polynomial [7], w(G; x), defined as

M
w(G;x) = 2. 0(G, k)x* (5)
k=0

and used to describe resonance relations among the hexagons of a benzenoid hydro-
carbon [7,8].

Subsequently, Balasubramanian and Ramaraj [9] studied the independence
polynomial (under the name color polynomial) in connection with certain polyominos
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which have applications in statistical physics, and are related to the so-called king
polynomials introduced by Motoyama and Hosoya [10] .

All the above-mentioned polynomials are essential to the study of the
topological theory of aromaticity, and thus their computation is a worthy effort.
For this reason, several computer programs and algebraic methods were recently
devised for such computations. A review written by Balasubramanian [11] outlines
such developments,

Fibonacci Graphs, the objects reviewed in this paper, present a surprisingly
easy pencil-and-paper method for calculating many counting graph polynomials of
potentially very large graphs.

To illustrate the power of this graphic tool, we quote a statement from Hess,
Schaad and Argranant [12] in their study of the topological resonance energy [13]
of certain annuleno-annulenes: “The computation of the GT resonance energy of
[16] annuleno[16] annulene required 10.5 minutes of CPU time on a DEC 10099
system. [18]annuleno[18]annulene was not completed after approximately
30 minutes.” To put this comment into perspective, however, it should be mentioned
that programs running on personal computers are now able to give graph-theoretical
resonance energies in a few minutes for the size of [18] annuleno[18] annulene.

The aboslute magnitudes of the coefficients of the reference (matching)
polynomial of the 18-annuleno-—18-annulene which are its nonadjacent numbers
p(G,0), p(G, 1), p(G,2), . .. ,p(G,M = 17) can now be hand-calculated. They
are, respectively:

{1, 35, 557, 5337, 34361, 157 081, 525 296, 1304 426,
2416571, 3317037, 3362528, 2440842, 1229614,
407 814, 81936, 8652, 361, 3}.

The method of computation of such sequences using the concept of Fibonacci graphs
is explained in detail later.

Similarly, we quote another statement made by Randi¢, Ru$Ci¢ and Trinajstic
[14] concerning the efficiency of computers as the size of the considered graph
becomes very large: "The difficulty is, we should emphasize, inherent in a procedure
which uses the Sachs theorem for construction, and applied equally to coefficients
of the characteristic polynomial as to coefficients of the acyclic polynomial. The
explosive growth of combinations limits even the usefulness of computers.”

The strategy of this paper is as follows: first we define and illustrate a sequence
of Fibonacci graphs, then more involved applications of the concept are given, and
thirdly the theory of Fibonacci graphs is presented. Here, the theory is postponed
until a later section because it is usually uninteresting to start a topic with closed-form
equations! Finally, special types of Fibonacci graphs will be presented.



4 S. El-Basil, Fibonacci graphs

2. Illustration, definition and construction of Fibonacci graphs

To illustrate the concept [15—18], in fig. 1 we show several graphs and their
independence polynomials [eq. (5)]. Similarly, in fig. 2 we show five graphs together
with their counting polynomials [top line, eq. (1)] and matching (reference)
polynomials [second line, eq. (2)]. In both figures, the relation between the co-
efficients is illustrated. One can formalize a definition in the following way: Let
{G_,, Gy, G,, G,, ...} be asetof graphs (which may be finite or infinite). The
above set is called a set of Fibonacci graphs if for any three consecutive members the
following relation holds:

I(G

ar K1) = IG,

o kD) +IG k), (6)
where (G, k) is a graph invariant of an arbitrary graph G on N vertices. In this
review, I(Gy, k) is restricted to p(G, k) and/or O(G, k). The graph shown in figs.
1 and 2 thus represent two sets of Fibonacci graphs.

It turns out that it is not trivial to characterize members of a set of Fibonacci
graphs. For example, T, (in fig. 3) may seem to be amember of the Fibonacci sequence
{T,, Ts, T3}; however, inspection of their nonadjacent numbers reveals that 7, does
not obey the recursion described by eq. (6). A similar situation is depicted in fig. 4:
G4 is not a member of the Fibonacci family {g(1), G(2), G(3)}. This is a crucial
point because the use of the concept of Fibonacci graphs in the computation of a
counting polynomial of a large graph depends on digression of this graph to much
smaller graphs by identifying its leading two members (i.e. the first two members
in the Fibonacci set). It is obvious that the leading two members of 7, (fig. 3) are
not T, and T,, and similarly one cannot use the counting polynomials of g(1) and
G(2) to obtain that of G(4). This is related to the problem of construction of
Fibonacci graphs. This problem is treated in refs. [17] and [18], which we review here.

CONSTRUCTION OF FIBONACCI GRAPHS

A set of Fibonacci graphs possesses at least three elements. There are two ways
of constructing a set of Fibonacci graphs, viz.:

(a) External subdivisions

This process can be described in the following way. Let G, be an arbitrary
graph, possessing at least one edge. Its two adjacent vertices are labelled as vy and v; .
For all i 2 1, the graph G;,, is obtained from G; by inserting a vertex v;,, on the
edge connecting v;_; and vo. The graph G, is obtained from G, by identifying the
vertices vy and v,, while the graph G_, is obtained from G by deleting the vertices
vo and vy . Then the infinite set {G_l, Go, G1, G4, ...} is aset of Fibonacci graphs.
Figure S illustrates this mode of construction.
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Fig. 3. Four trees and their nonadjacent numbers
ordered as p(7,0), p(T, 1), p(T,2),... . It canbe
seen that T, is not a member of the finite set of
Fibonacci trees { T, T,, Ts}.

9 G2 G(3)
Gya)
gp: 1.6 9 3 0
NN
Gyt 1 8.8 11 O
RN
Gz 1 9 24204 0
= *

+
Gyg: 1 10 31 3311

Fig. 4. A set of graphs and their corresponding se-
quences of nonadjacent numbers listed, respectively,
as p(G,0), p(G, 1), p(G, 2), ... .Itis observed that
G(4)}is not a member of the Fibonacciset {g (1), G (2),
G(3).
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Fig. 5. Construction of Fibonacci graphs via external subdivision.
The process leads to the infinite set {G_l, G,, G,, G,, .. }

G

(b)  Internal subdivision

This is a process whereby a ring or a path in a graph is enlarged, keeping all
other parts of the graph invariant. An illustration is provided in fig. 6.
It is now easy to predict that 7, is not a member of the Fibonacci set

T,, T,, T; (fig.3) and similarly for G(4) of fig. 4.
i i*—#—' “___W ___>V ﬁvglq..,
Vo Yo W Voo V3
G

G Gy G,

21 3

G, 6, G,

Fig. 6. Hlustration of construction of Fibonacci graphs via
internal subdivision. The infinite set of Fibonacci graphs is
{G,, G,, G, - .. }. Observe that G_, is notamember of this set.
The top set illustrates the subdivision on a ring, while the second
set is an internal subdivision along a path.

3. Computational applications of Fibonacci graphs.

We shall briefly review three types of applications, viz., direct applications,
more involved applications and, finally, how to use this concept to calculate other
polynomials such as the sextet polynomials [19], rook polynomials and king poly-
nomials. This third aspect then links Fibonacci graphs with two important problems:
one in chemistry, which is the count of Kekulé structures, an already solved problem
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since the early fifties [20], but still of interest, and a problem in statistical physics,
namely, the distribution of kings on lattice graphs [9,21].

3.1. DIRECT APPLICATIONS

Suppose one wishes to calculate some counting polynomial of a large graph
such as the one shown in fig. 7: G4, a graph on 14 vertices. Naturally, it is difficult
to calculate all of its nonadjacent numbers by hand. (It is possible, probably, using a

P+ 0

I

0 1.6 3 O
NN

1 1 7.8 0
NN EN

2 1814?0

[
3 19 211 0

10 1 17 N3 375654574 217 23 O

Fig. 7. Graphical synthesis of the nonadjacent numbers p (G, 0),
p(G, 1), ...of G, byidentifyingits first two Fibonacci members,
viz.j=0,j=1.

program [22]). This problem can be solved by identifying the first two members of
the set of Fibonacci graphs to which G4 belongs. The whole computation takes less
than 10 minutes using a desk calculator. This example illustrates a case of internal
subdivision on a ring. In fig. 8, we illustrate internal subdivision along a path where
the nonadjacent numbers of 715, a tree on 18 vertices, are computed from those of
T3 and Ty, i.e. the first two members in the corresponding Fibonacci set.

32, MORE INVOLVED APPLICATIONS

3.2a. Characteristic polynomials

Although the spectrum (i.e. eigenvalues) of the characteristic polynomial of
fairly large graphs can be obtained routinely using readily available computer
programs, the characteristic polynomial itself has been less easy to calculate. Recently,
Balasubramanian [23] and Balasubramanian and Randi¢ [24] applied theorems due to
Goldsil and McKay [25] and were able to reduce the secular determinant of a graph
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Fig. 8. Graphical induction of the leading Fibonacci tree T, to
T, . The last line gives p(Ty5,0), P(Tyy,1 ), - D(Tyy, ;) Of Ty

adjacency matrix by elegantly pruning the graph at selective points. Their method,
however, works mainly for acyclic graphs and/or graphs with pending bonds (i.e. a
bond with a vertex of degree one).

Here, we demonstrate that using the concept of Fibonacci graphs we can make
elegant use of Sachs’ theory [26] to calculate the characteristic polynomials of graphs
(cyclic or acyclic) of potentially very large size. First, we review the Sachs formula
[26]. The characteristic polynomial of a graph containing N vertices is given by

P(G;x)=aOXN+alXN’1+a2XN"2+...+aN, (7)

where a,,s, 0 < m < N, are coefficients given by the Sachs formula:

a = 2. (~1°®)2®), (8)

SE Sy,

c(s) and r(s) are, respectively, the number of components and cyclesin S, , the Sachs
graph on m vertices, and the summation is taken over all S,',1 s, i.e. Sachs graphs on m
vertices. A Sachs graph is either a K, subgraph, a cycle, and/or a union of both. As
an illustration, fig. 9 shows all Sachs graphs for a graph containing two 3-membered
rings. Obviously, as the size of the graph grows the number of terms proliferates
exponentially and the count of all Sachs graphs by inspection becomes error-prone.

To approach this problem using Fibonacci graphs, we resolve the coefficients
of the characteristic polynomial into strictly acyclic and cyclic terms; thus:
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1 6
3 7
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S] = 0 a,=0 (By definition)
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ag=6-(-1%2' =12
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P(M;x)=  -7x a2k +3

Fig. 9. All sets of Sachs graphs and coefficient of the
characteristic polynomial of G;.

w
o]

a2 = z (_l)c(s)

m
sESg,C

= —1e(8) 9 r(s)
ar(;y z ( I)CSer,

sES,(,:,y

where the superscript ac stands for acyclic, while cy means cyclic. S5 is an acyclic
Sachs graph, i.e. containing at least one cycle. The subscript m is the number of its

vertices. Therefore, a coefficient in P(G; x) can be expressed as:
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— ,ac cy
a =a*+a. (11)
As an illustration, a¢ of G (fig. 9) can be resolved into two terms, viz.,

c (_1)3 20

-1

al¥ = (-1)?* 22

4,

whence ag = —1+4=3.

Sets of Fibonacci graphs satisfy the following two recursions [16] [which are
special cases of eq. (6)]:

2% (G )] + 1a%_ (Gy, )l = 1%, Gy, )l i=0,2,4,... (13)

and

laZ (G + laf], Gy, 1 = a7, (Gy )] (14)
i=3,5,7,... andfor i=0,2,4,...(a; = 0).

Knowing the signs (which is trivial), we can then compute the a;,’s. An illustra-
tion is depicted in fig. 10. It is observed that the recurrence holds only for the odd
subscripted coefficients of their P(G; x)’s. This presents no difficulty, however, since
both egs. (13) and (14) hold (i.e. for the resolved parts). This subtle point is illustrated
in fig. 11 for a¢ and ag of the Fibonacci graphs shown in fig. 10, namely, it can be
seen that contributions of odd-membered rings to coefficients with even subscripts
lead to inequality:

la (G )+ la,, (G I #* g, (G ) 1=0,2,4,.... (15)
This is clear from fig. 11. When all rings in G are even-membered, eq. (15) becomes an
equality. As an illustration, we consider the characteristic polynomials of the Fibonacci
graphs shown in fig. 12.

Evidently, the concept of Fibonacci graphs is quite useful and promising in
providing an easy pencil-and-paper approach to the problem of characteristic poly-
nomials of potentially very large graphs. Also, such recursions can be used to facilitate
a computer program.

3.2b. Sextet and related polynomials: On the number of Kekulé structures

The several applications of graph-theoretical and combinatorial approaches to
problems of organic chemistry (particularly alkanes [4,5] and benzenoid hydro-
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Cyclic Coefficients with odd subscripts

cy ¢y .Cy Cy
k oy of 07 ag
0 -4 12 0 0
-4 16\-14\0
™~
2 -4 20 -1|6 (|)
3 -4 24 -324
Cyclic Coefficients with even subscripts
o 4 0
1 4\0
4\-'[4
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Characteristic Polynomial Coefficients
k Gg 0, Q3 Q4 05 Qg 0Oy Qg dg
0 1 -7 41123 0 0 O
1 -8-4176 -2 -4 0 0
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2 1 -9 -4 24 20 -13 16 2 o]
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Fig. 10. Hiustration of calculation of the characteristic
polynomial of a cyclic graph conraining no pending
bonds using the concept of Fibonacci graphs. Observe
that both cyclic and acyclic coefficients obey recursion
equation (6), but the summed values do not.
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Fig. 11. Illustration of the resolution of the characteristic
polynomial coefficients into cyclic and acyclic components.
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Fig. 12. Ilustration of the calculation of the characteristic
polynomial of a graph containing no odd-membered rings by
subduction to lowest Fibonacci member.
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carbons [3]) and to statistical physics [20,21] led to the definition of several related
counting polynomials, of which the counting polynomial of Hosoya [4] eq. (1) is a
special case of a more general definition, namely:

M
F(G;x)= ). 6(G, k)-X*, (16)
k=20

where 6(G, k) is a combinatorial function that enumerates certain defined invariants
of G, viz.,

PG, k)

0(G, k
(G, k) = r((B k)) . (17)

p(r, k)

p(G, k) and O(G, k) are defined by egs. (1) and (5). The quantity of r(G, k) was first
defined by Hosoya and Yamaguchi [27], which they called the kth resonant number.
It counts the number of selections of k nonadjacent but mutually resonant hexagons
when G is the molecular graph of a benzenoid hydrocarbon. The resulting polynomial
is called the sextet polynomial o(B;x). It provides a combinatorial analysis of K, the
number of Kekulé structures of the benzenoid hydrocarbons, thus:

M
o(B;x) = . r(B;k)x*. (18)
K=0

Obviously, for x = 1, the value of o(B; x) is simply K;i.e.,
o(B;1) = K. (19)

The sextet polynomial occupies a central block in the topological theory of benzenoid
systems [1—3]. The quantity p(r, k) defines the number of ways of selecting 7 non-
attacking rooks on a rook board r. Two rooks are defined to be nonadjacent if they do
not share the same row and column. The quantities p(r, k)’s define the coefficients
of the rook polynomial given by

M
R(r;x) = 3. p(r, k)x*. (20)
k=0

Rook polynomials have a number of chemical [28] and mathematical applica-
tions [29]. The above-mentioned polynomials were recently extensively reviewed by
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this author [30]. The concept of Fibonacci graphs can be used to compute poly-
nomials defined by eqs. (1), (5), (18) and (20) for very large graphs. First, we digress
to three types of related graphs which resulted from nearly twenty years of work in
mathematical chemistry [1-3,30].

(a) The caterpillar tree or Gutman tree [30,31]. This is an acyclic graph
formed by the addition of m monovalent vertices (m = 0 or any other integer) to each
of the vertices of a path. These trees play a role in the theory of aromaticity.

(b) The Clar graph A. When the hexagons of a benzenoid hydrocarbon are
replaced by vertices, and then every two vertices corresponding to two nonresonant
hexagons are connected, a Clar graph results. If the benzenoid hydrocarbon contains
no hexagon surrounded by three other hexagons, i.e. if it is nonbranched, its Clar
graph becomes the line graph [32] of a certain caterpillar tree whose counting poly-
nomial [eq. (1)] is the sextet polynomial [eq. (18)] of the benzenoid hydrocarbon.
This is also the independence polynomial of the Clar graph:

0(B;x) = H(T;x) = w(A;x). 21

In such a case, {B, T, A} is called a set of Equivalent Graphs [33].

(¢) Rook boards. Every caterpillar tree (in fact, every bipartite graph) can be
associated with a rook board r [28] when the vertices of the tree are replaced by
cells such that two cells in r are adjacent only if the corresponding two verticesin T
are also adjacent. However, adjacency relations among the cells of r are defined as
follows: two cells in r are adjacent if they share the same row and/or column. One can
construct a rook board whose rook polynomial is identical to the counting poly-
nomial of T. Thus, the set of equivalent graphs can be expanded to include r, viz.,
{B, T, A, r}. An illustration of a set of equivalent graphs is shown in fig. 13. The main
value of a set of equivalent graphs is computational, namely, if one is able to calculate,
say H(T;x) other polynomials, viz., 0(B;x), w(A;x), R(r;x) become immediately
available. Then one can use the concept of Fibonacci graphs to calculate, say, a rook
polynomial of a very large rook board by constructing the appropriate set of Fibonacci
caterpillar trees. An illustration is shown in fig. 14. Thus, using the idea of equivalent
graphs together with the concept of Fibonacci graphs, we have an easy way of hand-
calculating many counting polynomials of very large graphs. The sextet polynomial of
Bio (shown in fig. 14)is 1 + 17x + 114x? + 381x> + 658x* + 546x5 + 172x% +9x7.
Whence, K(Bo) = 1898 (an alternative to the “classic” method of Gordon and
Davison [20]). Further, we know from the polynomial that the maximum number of
non-attacking rooks is seven and there are only nine ways of placing such seven rooks
on the rook board r;o drawn in fig. 14. Also, it is trivial to conclude that there are
114 ways of coloring two vertices in Ajo black so that no two black vertices are
adjacent, but this number becomes 658 when we choose four nonadjacent vertices.
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Fig. 13. A set of “equivalent graphs”; respectively, from left to right:
a caterpillar tree, a benzenoid graph, a Clar graph, and a rook board.
One observes the following interesting identity: H(T;x) = o(B;x)
=w(A:x)=R(r;x)=1+8x+15x*; K =24,

<

Nonadjacent Numbers, p(T,0), p(T,1),..., p(T,M)

m

11 8\15\\
2 1\? 2]2?
3 1 10 3024

10 1 17 114 381658 546172 9

L1

By K=1898

Fig. 14. Induction of the nonadjacent numbers of m = 1 to those of
m = 10 which corresponds to the kth resonant numbers of a non-
branched benzenoid hydrocarbon on 17 hexagons. The corresponding
Kekule count is 1898. The Fibonacci approach shown here is an alter-
native to the combinatorial method of Gordon and Davison [20]. Also
shown in the figure is the equivalent Clar and rook graphs.



S. El-Basil, Fibonacci graphs 17

0 | |]H<@M B o[]<_>$ﬂ_\

> rik,2)

rix) <

018 — e O > Geres

L UWORE S L=

Fig. 15. Colorings of a graph and the corresponding king patterns.
The corresponding king polynomial is 1 +6x +6x* +x*.

3.2¢. King polynomino graphs, king polynomials and color polynomials

Nearly a decade ago, Motoyama and Hosoya [10] generated king polyominos
by the stacking of squares of equal sizes, called cells. They defined a king polynomial

as follows:
M

K(k;x) = 2. r(k, k)xF, (22)
k=0

where r(k, k) is the number of ways of placing k¥ nontaking kings on the king
polyomino k. Two kings are called nontaking if they occupy nonadjacent cells, i.e. cells
sharing no common vertices. Conventionally, r(x,0) = 1. Motoyama and Hosoya’s
work proved to be useful in treating several enumeration problems of lattice dynamics,
namely the partition function of the magnetic properties of transition metal crystals
[34], as well as other problems in dimer statistics. In fig. 15, we illustrate various
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KLG
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Kz,e
J
] p
[(TITT T TTTTTT] < ooyt

K, 1 7 1 51

0
SN

1 8 171 2 0
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Ko, 19 24225 0

KZ,G 1T 13 62 13614061 @ O

Kyg 1 12 51 9579284 0
’ SN SO N N

Kyg 1 13 62 136714061 9 O

KS,S 1 16 101 323 558515238508 O

Fig. 16. Fibonacci generation of the king and color polynomials
of K, ,, a graph on 16 components, by three Fibonacci external
subdivisions.

terms of the king polynomial of an arbitrary king polyomino graph. It can be shown
that there is a one-to-one correspondence with the colorings of certain graphs, which
are the dualist graphs [35] of the king polyominos (fig. 15). Whence, the color and
king polynomials can be obtained from one another, which has recently been demon-
strated by Balasubramanian and Ramaraj [9]. They computed these polynomials
for very large lattices. In a recent paper, the present author [21] demonstrated how to
use the concept of Fibonacci graphs to calculate king polynomials of a large lattice.
Another example is depicted in fig. 16. The method uses three Fibonacci external
subdivisions, viz., K; | > K, ¢; K51 = K ¢, and finally K ¢ and K, ¢ are used as
the first two Fibonacci members leadmg to the desired K 5,67 a polyommo on 16 cells.
Its kmg polynomial is 1+ 16x +101x? + 323x3 +558x% +515x% +238x% + 50x”

+ 8x® . Thus, we can immediately see that the maximum number of nontaking kings
is eight and that there are exactly eight ways of distributing the eight kings. Similarly,
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there are exactly 558 ways of arranging four nontaking kings on the king board K 5.6
The color polynomials of the leading members can be obtained either by inspection or
by using a well-known recursion, viz.,

Ww(G;x) = (G~ v;x) + xw(GBu; x), (23)

where v is any vertex in G and G — v is a subgraph obtained by deleting v from G,
while GOv is obtained when v and all its adjacent vertices are pruned out of G.

3.2d. Large annuleno —annulenes

In early applications of the topological theory of aromaticity, Hess and Schaad
[12] faced a difficulty in computing the matching (reference) polynomials of large
annuleno—annulenes, as mentioned in the introduction. The absolute magnitudes of
the coefficients of the matching polynomial of a graph are simply its nonadjacent
numbers. In fig. 17, we illustrate how to calculate the nonadjacent numbers of
18-annuleno— 18-annulene. Such parameters might be obtained in about three-quarters
of an hour using a desk calculator and three steps of internal subdivisions, as depicted
in fig. 17.

4. Theory of Fibonacci graphs. Modulation of the polynomial of a
graph with the polynomial of a path [18]

4.1. THE MATCHING POLYNOMIAL

Let M(G,;x) = M, be the matching polynomial of a graph on n vertices. If
G, G,,, and G, ,, are three Fibonacci graphs, then the following identity is true:

n’ n
Mn+2QXMn+1+M1=O' (24)
The above equation corresponds to the auxilliary equation:

N - xA+1=0, (25)

with the following solutions:

\ =xi(x2—4).

12 7 (26)

We use the following convenient change of variable

x = 2cost. (27)
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P>~ — ~[Dn

AL] 1,2 AT,TS
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Asa Aoz Az
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6 16

Ase16

A\ 1 15 2 O

' NN
A, 166 0
Ay 16 ] 20 167 756 2015 3212 2970 1464 321 20
Aoy 1 8 &0

, A
A2’2 1 7 m 3
A2 1 1 21 186 906 2652 4785 5247 3312 1071

137 3
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A16 1 1 35 357 5337 34361 157081 525296 1304426

2416571 3327037 3362528 2440842 1229614
407814 81936 8652 361 3

Fig. 17. Generation of the sequence of nonadjacent numbers of
18-annuleno — 18-annulene by starting three Fibonacci internal
subdivisions using A4, , and A4, ,. The last three lines, 4, ,,,
were not completed after about 30 minutes on a DEC 1099
system [12]. Using the definition of Fibonacci graphs, we ob-
tained the desired values in less than an hour. using only a desk
calculator.
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Then,

. . + i
A, =costtisinz=e"!,

where i= (- 1)V/2.
Now M, can be expressed by

M, = aN! + A

n

Therefore,

M

int ~int
= ae’ +fe

a(cos nt + isinnt) + B(cos nt — isin nt),
ie.,

fl

M, = (a+ B) cos nt + i(a— ) sin nt.

The constants « and {8 are determined from the initial conditions; thus:

M,=a+8

M = (a+ ) cost+i(a— f)sint,
or

M, =M cosr+ i(a— B)sin t.
Then,

] M, — My cost

fe=f) = ————.

sin ¢

Now we substitute eqs. (31) and (33) into (30) to obtain:

M, =M,

sin ¢ sin t

However,

costsinnt — cosntsint = sin(nt—1t) = sin(n— 1)¢.

Whence,

in nt sin{n— 1)t
M=, SRy, SnleZ D7

sin ¢ sin ¢

sin nt cos f sin nt — cos nt sin nt
— MO

21

(28)

(29)

(30)

€)Y

(32)

(33)

(34)

(35)
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Now, for the paths M; = x = 2 costand M, = 1, i.e. for the paths M, =

eq. (35) becomes:

2costsinnt—sin(n— 1)t
sin ¢ ’

M(F,) =

However,

sinnt=2costsin(n— 1)t—sin(n— 2)t,
whence eq. (36) becomes

sin(n+ 1)t

M(P) =
(£) sin ¢
Therefore,

sin nt

= M(P

sin ¢ Fr-1)
and

sin(n— 1)t

— =M(P,_,).

sin ¢
Using eqs. (38) and (39) into (35), we obtain the desired relation, viz.,

M, =M, M(P,_,) — MyM(P, ).

M(P,), and

(36)

(37)

(38)

(39)

(40)

Equation (40) described how the matching polynomials of Fibonacci graphs are
modulated with the matching polynomials of paths (which are their characteristic

polynomials).

We observe that eq. (37) is the trigonometric representation of Fibonacci
numbers, since they lead to the characteristic polynomials of the paths when the

appropriate trigonometric substitutions are made. Thus,

_ sinz _
M(PO) " sint L,

in 2¢ 2sintcost— sin (0)¢
M(P) = 811.12 = - (0 = 2cost = x,
1 sin ¢ sint
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in 3¢ 2sin 2f cost— sin t 4 sin t cos® ¢ — sin ¢
M(P)=s. = . - . )=x2—l.
2 sin t sin ¢t sin t

Higher terms can be similarly generated.

42. THE COUNTING AND INDEPENDENCE (COLOR) POLYNOMIALS

Let F, indicate either the counting or independence polynomials (egs. (1), (5),
respectively) of a graph containing 7 vertices. For a series of Fibonacci graphs, the
following recursion applies:

F

r+2

F.,., —xF =0, (41)
which requires the following auxilliary equation:

A-A-x=0 (42)
with the following two solutions:

1% (1+4x)Y?
Mot (43)

We use the following change of variable:

_ )2
oo (2 cos t) ) (“44)

Then,
costtisint exp (fir)
= = . 45
>\1,2 2cost 2cost (43)

The most general solution of F, is
F,= AN +BX,, (46)

where 4 and B are constants to be determined from initial states.
Using (45) and (46), one obtains after straightforward algebraic manipulations:

F = ( ! )r [(A+ B)cosrt+i(4 — B)sinrt] . 4n
r 2cost
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Now, to find 4 and B we proceed as before, namely from (46) and (45):

F,=A+B (48)
A (cost+isinyt) B(cost—isint)
= +
FI 2cost 2cost (49)
or
Fo sin ¢
F=— +id~8B 50
2 i )2cosz‘ ' (50)
whence
2cost cos t
i(4—-B)=F - F— 51
i ) I sint G sint 1)

Ussing (48) and (51) into (47), we finally obtain:

1Y sin 7t sin (7 - l)t]
F = 2 tF -F 52
’ (2 cos t) [ S ine 0 sin ¢ (52)

To obtain the function for the paths, we assume the special case:

Fo=F =1 (53)
and use eq. (53) into

Fooy = B+ xF,

ro

which, for r = 0, leads to:

F2 = Fl + x,
ie.

F,=1+x. (54)
However,

1+ x=w(P ;x) = HP,;x). (55)

Similarly, when r = 1, we get

F3= F2+xF1
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or
F3 =1+ 72x
= w(P,;x)
= H(P,;x) .

So in this special case (F, = F, = 1), we can write
F= o(P_;x) = HP;x), (Fy=F = 1)

where F; is a path on j vertices.
Now, for F; = F, = 1,eq.(52) becomes

FrEfrz( 1 )r[2sinrtcost—sin(r-l)t:I‘ (F,= F, = 1)

2 cost sin ¢

However,
sinnt = 2sin(n— 1)tcost—sin(n— 2)¢t.

Therefore,

f = 1\ sin(r+ 1)t
r 2 cost sin ¢

and whence

f- 1\t sinre
r-t 2 cost sin ¢

fo- 1 Y72 sin(r— )t
r=2 " \2cost sin ¢ '

Now eq. (52) may be rewritten as

1 V7! sinrt
= F
E (2 cos t) sint 1

and

1Y 1 \? 1 '2] sin (r — 1)t
- — . — - F
2cost 2cost 2cost sin ¢

25

(55)

(56)

(57)

(58)

(59)

(60)

(61)
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Using (59) and (60) into (67), we obtain:
F,=F fo +xF [, (62)

and using eq. (56), we obtain the desired relations:

(a) When F, = H(G,;x), then

H(G,;x) = H(G ;x)H(P,_, ;x) + xH(GO;x)H(P,_z;x); (63)

(b) When F, = w(G,;x), then
w(G,;x) = w(G ;x)w(p,_, ;x)+ xw(GO;x)w(Pr_3;x). (64)

Equations (63) and (64) describe the moldulation of the counting and color poly-
nomials of Fibonacci graphs with the corresponding path polynomials.

5. A special type of Fibonacci graph: Co-matched Fibonacci
graphs [17]

In this final section, we consider an interesting class of Fibonacci graphs
possessing identical matching polynomials. The graph G(g, r:s, t) is obtained by con-
necting an isolated vertex v to some of the vertices of a cycle containings + t+r + g
vertices. If we imagine v to be in the center of the cycle, then  + g is the number of
vertices to which v is connected, while s and ¢ are sets of vertices not connected to v.
An illustration is given in fig. 18. These families of graphs can be genrated by internal
subdivisions at either sides of the central vertex. An example is given in fig. 19. The
members of such families of such types of Fibonacci graphs are topomers [36], as
depicted in fig. 20. These topomers are also called R, S isomers and play a significant
role in graph-spectral theory recently developed by Polansky and Zander [36] and
others.

Acknowledgements

The author thanks the U.S. Office of Naval Research for partial support of
this work, and Professor R.B. King for encouragement and discussions. Travel assistance
from the Fulbright Commission in Cairo is appreciated.



27

S. El-Basil, Fibonacci graphs

‘syde1d g o3 Surpuods

-a1105 [erwoudjod ayy st suy ise syf “sydeid ooruoqly
POUSIRW-0 JO §195 JO uoneIauad onewalsAg 61 dId

X X X efge
\.xom+mxr¢r+mmeN+v ONN+m ¢m+m GL+1 Tmm 2Ln9

“LP2)9t8'ei2') o (6'22 )9 Lol E.o“m.:&

Yy B B (I
\V \V

T%/\\ )

-parestput axe sperwou4jod Surjuno)) “srequinu jusdefpeuou
reonuapt 3urssessod sydeid rooruoqry jo s1e§ g1 S1g

(¥s:2°2)9

/
/
L

0. ¢ 52 620l
//L/h/_
//¢/

o 0L

€

PET XSS XES+X0L+L
(2'e:e')o (£'1:e')o (p'oe')o

AR ARC N

KL+ XLe+¥6+1
(2':e :o (o2’

(P <Y )

et Xpl+¥8+l
:pmﬁo (2'ore'no

P ()



28 S. El-Basil, Fibonacci graphs

OA — s dn-A

Fig. 20. Depiction of co-matched Fibonacci
graphs as pairs of R, § isomers (topomers).
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